Output and Income Indicators

Image by Michael Reichelt. Downloaded from pixabay.com

In my previous Fan post (“Indicators of Government Expenditures”) I noted that, when using output indicators such as GDP, we should keep in mind that: a) there are important limitations to this indicator, and b) when used, there are different indicators that may be more or less appropriate for different purposes. I develop a bit on those two points here.

On the first point, an assessment was done in 2008 by a commission led by three economists, two of which Nobel prize awardees, at the request of the Government of France, and later summarized in a book. I draw from it here, although additional details are available online.1

The commission was led by Joseph Stiglitz, Amartya Sen (both Nobel Laureates), and Jean-Paul Fitoussi. Other economists were also part of the commission. The commission was divided in three working groups:

  • One to focus on standard issues of national accounting, such as measuring government output and treatment of household production;
  • A second group focused on the relationship between output measures and efforts to measure well-being or quality of life;
  • A third group looked at attempts to capture sustainability in measures of output.

On the “classical GDP Issues,” GDP mainly measures market production, and one reason why money measures have come to play an important role in our evaluation of economic performance is that money valuations facilitate aggregation. However:

  • Prices do not exist for some types of output (e.g. government services provided free of charge or household services such as child care);
  • Market prices may not reflect consumer’s appreciation of goods and services if there is imperfect information (e.g. financial products, telecommunications bundles);
  • Market prices may not fully reflect societal evaluation due to externalities (e.g. environmental costs);
  • Collecting accurate data may be challenging when there are sales or differences in prices among alternative selling mechanisms (e.g. online vs store prices);
  • Accounting for quality of products and changes in quality is challenging and may not always be reflected in prices;
  • Underestimating quality improvement means overestimating inflation, which, in turn, means underestimating real income.

These are not minor inconveniences, but real issues, and the extent to which GDP measures are distorted by them is not clear. They discuss in some length the issues with measuring services, for example. Services account for up to two thirds of output and measuring the quality of services is challenging. Measuring government provision of services, for example, is often done through inputs, which leave aside the possibility of capturing changes in productivity. Attempts to measure government services using outputs face known challenges, such as accounting for quality. What services are considered final and what intermediate (or “defensive”) services is difficult to define. E.g.: government costs with prisons? Private costs with commuting?

The authors suggest five ways of dealing with some of the deficiencies of GDP as an indicator of living standards:

  1. Emphasize well established indicators other than GDP
    • Gross, rather than Net, has the issue of not accounting for the amount of output that is needed to maintain capital goods (depreciation). When technology is changing rapidly, this could be substantial and the difference between Gross and Net can be considerable. Then – consider “Net” (although depreciation is hard to estimate);
    • Product, rather than Income, has the issue of not being as good for accounting household consumption and, therefore, associated well-being. The difference is the purchasing power sent to and received from abroad (net income from abroad). Also, changes in the relative prices of exports and imports will affect national income even if domestic product stays the same. Consider “Income;”
  2. Consider wealth jointly with consumption to capture consumption possibilities over time;
  3. Bring out the household perspective
    • Adjusted disposable income accounts for government taxes and monetary transfers but not for transfers in kind;
  4. Add information on the distribution of income, consumption and wealth:
    • Median is better than average, but depends on survey data and these have known challenges:
      • Unit of measurement? Consumption unit?
      • Measuring property income?
      • International comparability
      • Whose bundle of consumption?
      • Changes in the provision of services within households or between families to provision by markets creates distortions
    • Also, we should be looking at distribution of full income, not just market income, including values such as household income and leisure
  5. Widen the scope of what is being measured (may require imputation):
    • Recommendation is to keep a satellite account because: a) imputed values are not as reliable as observed values; b) non-observed values could end up being a very large share of total output. E.g.:
      • Household work, under the authors estimates, could be 30% of currently measured GDP;
      • Leisure could be 80%;
    • They still recommend it be done for a) completeness; b) the invariance principle – under which the value of a good or services should not depend on the institutional arrangement under which it is provided (e.g. free by state or charged by private sector).

The other two areas taken on by the commission working groups are more intuitive to me, even if not easy to address so I only briefly summarize the conclusions of the corresponding working groups:

  1. On the relationship between output measures and efforts to measure well-being or quality of life, the argument is that these latter concepts cannot be reduced to resources. Efforts to measure well-being and quality of life have either attempted to measure subjective perceptions, tried to assess capabilities that would enable and support human functioning (health, education, security…) or tried to identify how individuals themselves weigh the non-monetary aspects of their well-being. All these attempts face challenges, including how to incorporate inequalities, how to access the linkages between the various dimensions of well-being or quality of life, and how to aggregate them;
  2. On attempts to capture sustainability in measures of output, there is a large and varied literature that the commission divided in four groups: attempts to establish large dashboards with sets of indicators addressing different aspects of sustainability; attempt to develop composite indices; attempts to develop adjusted GDP indicators; and indicators focusing on overconsumption or overinvestment.

What do I draw from the above? A few initial thoughts:

  • When using an indicator of output growth for a selected country or group of countries, I have typically used the World Bank, World Development Indicators (WDI), Gross Domestic Product (GDP) series in Local Currency Units (LCUs). I have used LCUs when looking at growth instead of alternative monetary units, to avoid the influence of short term fluctuations of exchange rates. Attempts to correct for this influence, such as the World Bank’s Atlas measure (more on this below) or the use of Purchase Power Parity (PPP) measures seem unnecessary, given their imperfections and that we are only interested in growth and not in comparing the absolute value of output among countries. This series can be used to break down domestic output in its expenditure components (G+C+I+Ex-Im+changes in inventories), as well as by sector of the economy (agriculture, industry and services)2. It is available for a period of over 60 years for most countries. Based on the input above:
    • The use of output rather than income indicators when looking at growth seems reasonable to me and perhaps more relevant: it better reflects the production capacity of a country (rather than its standard of living) and, for most countries, output and income do not tend to diverge much over time (although this may not always be the case and would be interesting to look at the data).
    • The fact that GDP indicators do not capture household production means that growth is likely overestimated during periods where agricultural production for own consumption is reduced and production for the market is increased. GDP growth is also likely overestimated during periods of increased entry of women in the labor market, if this also means decreased services within the household. I would need to further research the WB WDI methodology to see the extent to which the WB tries to address this issue in their measurements;
    • The extent to which the informal economy is captured also requires further look into the WB WDI indicator methodology. If it does not capture the informal economy well, growth would also be overestimated during periods of formalization.
  • I have used The World Bank, World Development Indicators (WDI), Gross National Income (GNI) series in Purchasing Power Parity (PPP) when comparing countries. I have preferred to use at the concept of income (what belongs to the residents of a country) rather than product (what is produced within the boundaries of a country) when comparing countries because it is a better indicator of resources available to the local population. For cross country comparisons, PPP measures (even if imperfect) allow some correction for price and exchange rate distortions regarding how much residents of two compared countries can actually purchase with their income. This series is available for fewer years and countries. Based on the input above:
    • Periods of rapid technological transformation – such as the one we are in now – are likely generating considerable distortion in our relative measurements of income by country, given the challenges in addressing quality of products and services. To the extent that we are able to use net indicators (as opposed to gross), accounting for depreciation in such periods is also a more serious challenge and a source of distortion.
    • Does our association of value with market prices mean that our association of income per capita with productivity is somewhat distorted? I explain: think of luxury goods, where price is not necessarily associated with quality but where status of a brand plays an important role in product prices. Countries with heavy presence of luxury industries will have their per capita incomes associated with this higher price that is fabricated by the status of their products rather than by the quality of their products. How we understand the productivity of their population would need to be interpreted in this context (Italy, I am thinking of you).
    • Do the decaying European houses (that we think of as so charming) mean that European household income tends to be overestimated by the use of gross measurements?
    • On the other hand, does the fact that we do not capture the value of leisure underestimate European household income relative to countries like the US?
  • The World Bank uses GNI per capita in US dollars converted from local currency through the Atlas method to classify countries in income groups (low income, lower middle income, higher middle income and high income). The Atlas method is based on three year moving averages of exchange rates. They use the Atlas method rather than PPP arguing that “issues concerning methodology, geographic coverage, timeliness, quality and extrapolation techniques have precluded the use of PPP conversion factors for this purpose” (World Bank, undated). This seems to also be the indicator the WB uses for establishing the annual threshold for countries to qualify for International Development Association (IDA) loans. The US Millennium Challenge Corporation (MCC) uses the WB country income groups to select countries that qualify for its assistance (low income and lower middle income). Based on the input above:
    • If we underestimate income in low-income economies, given that they often also have larger portions of their economies not captured by GNI measurements (greater presence of subsistence agriculture, household production and services, informality), what does this mean for our categorization of countries in income groups? How distorted are these classifications? Should we be interpreting them as rather “market income” groups? If so, to what extent are our foreign assistance programs directed at increasing “market income,” rather than income as a whole? To what extent are our foreign assistance impact evaluations distorted by not recognizing this distinction?

Notes

  1. There used to be a site with technical papers at the URL: www.stiglitz-sen-fitoussi.fr . This seems to no longer be available but I found a link to the content here: https://web.archive.org/web/20150622185128/http://www.stiglitz-sen-fitoussi.fr/en/index.htm
  2. The WB World Development Indicators reports total value added at basic or producer prices and GDP at purchaser prices. That is why their measurements differ. Purchaser prices include taxes and exclude subsidies. For more information, see here: https://datahelpdesk.worldbank.org/knowledgebase/articles/114948-what-is-the-difference-between-total-value-added-a

References

Stiglitz, Joseph A; Sen, Amartya; and Jean-Paul Fitoussi. 2010. Measuring our Lives: Why GDP Doesn’t Add Up. The Report by the Commission on the Measurement of Economic Peformance and Social Progress. The New York Press.

World Bank. Undated. Why use GNI per capita to classify economies into income groupings?. Available: https://datahelpdesk.worldbank.org/knowledgebase/articles/378831-why-use-gni-per-capita-to-classify-economies-into. Accessed: June 08, 2024.

Continue ReadingOutput and Income Indicators

Indicators of Government Expenditures

Image by Abraham Bosse. Downloaded from picryl.com

The International Monetary Fund (IMF) has a couple of public dashboards showing government expenditures as a percentage of Gross Domestic Product (GDP), by country. See here and here. There is nothing wrong in doing this if we keep in mind that we are using GDP as a denominator just as a tool to give us a reference of the relative size of government expenditures in different countries. But, based on this kind of data, it is common to hear things like “government expenditures were 61% of the entire French economy or 45% of the US economy in 2020,” as if these numbers were breaking down the total of the economy (100%) in its government and non-government portions. This would be incorrect and, unfortunately, it ends up supporting all sorts of confused discussions about the role of government in the economy.

The comparison between government expenditures and GDP is one of apples and oranges and only makes sense if we understand, again, that GDP is being used as a denominator only as a convenient tool to facilitate country comparisons. Government expenditures, as reflected in databases like that of the IMF, are measures of total expenditures, either by central and local governments or just by central governments (depending on the country), over a one year period. GDP does not measure total expenditures, but rather “value added” by the economy over a one year period. The difference is that measures of value added discount from measures of expenditures, the purchases of intermediate goods and services used to provide the goods and services by the sector in question. Value added is used when measuring output by sector, to allow summing these sectors without double counting. The result is a general measure of output, such as GDP.

To illustrate, see the table below (Figure 1). The second column shows the government as a share of GDP in 2020 for selected countries, as measured in total expenditures and reported by the IMF. The third column shows government consumption as a share of GDP, as measured in value added and reported by the World Bank World Development Indicators. The actual share of the GDP that corresponds to the government would need to add government investment (fixed capital formation) to government consumption. These data were not readily available for most countries in the WB WDI dataset and it seems like disentangling government and private fixed capital formation is not very simple. So I added total fixed capital formation (public and private) to government consumption, for the sake of comparison with IMF numbers (fourth column). The actual weight of the government in GDP should be somewhere between columns three and four.

Figure 1. Government Relative to GDP, Selected Countries, 2020

CountryGovernment Expenditures as % of GDP (IMF)1Government Consumption (value added) as % of GDP (WB)2Government Consumption +Total (public and private) Fixed Capital Formation (value added) as % of GDP (WB)2
France61.3524.8448.12
Germany50.4622.0243.57
Brazil49.9220.1436.70
United Kingdom49.8722.6040.07
United States44.8215.0936.94

Sources: 1. IMF DATAMAPPER. Fiscal Monitor, October 2023, https://www.imf.org/external/datamapper/G_X_G01_GDP_PT@FM/ADVEC/FM_EMG/FM_LIDC. 2. World Bank World Development Indicators. Accessed April 2024, https://databank.worldbank.org/source/world-development-indicators.

Note: government expenditures in 2020 were generally higher than usual, as countries tried to minimize the economic effects of the COVID 19 pandemic.

I am sure there are better data out there somewhere but, after spending some time trying to unbury the IMF metadata (should be more easily findable) my patience was running low. For the US, see data from the Bureau of Economic Analysis which defines the value added by Government as being “the sum of compensation paid to general government employees plus consumption of government owned fixed capital (CFC), which is commonly known as depreciation (BEA, 2008, p.29).” My point still holds.

Another way of looking at the actual weight of government expenditures in the economy would be to compare, not with GDP, but with total output in an economy over a one year period, that is, not discounting intermediate products and services. Country national accounts typically do show this indicator and it tends to be roughly twice as large of the total value added in any one year. The ratio of total output to value added is available in Table 2.6 of the United Nations (UN) National Accounts Statistics. Figure 2 below applies that ratio to the IMF indicator of government expenditures as a share of GDP to obtain a rough estimate of the share of government expenditures over total output in the last column of the table. Note that the resulting estimates are within the range of columns 3 and 4 of Figure 1.

Figure 2. Government Relative to Total Output, Selected Countries, 2020

CountryGovernment Expenditures as % of GDP (IMF)1(a)Ratio of Total Output to Value Added (UN)2 (b)Rough Estimate of Government Expenditures as % of Total Output (a/b)
France61.351.9531.42
Germany50.462.0324.83
Brazil49.922.0724.14
United Kingdom49.871.8926.40
United States44.821.7725.39

Sources: 1. IMF DATAMAPPER. Fiscal Monitor, October 2023, https://www.imf.org/external/datamapper/G_X_G01_GDP_PT@FM/ADVEC/FM_EMG/FM_LIDC; 2. UN National Accounts Statistics. Main Aggregates and Detailed Tables. Table 2.6, Accessed April 2024, https://unstats.un.org/unsd/nationalaccount/madt.asp?SB=1&#SBG

Again, I am sure there are better data out there, but the fact that I had to spend considerable time deciphering the data above and still don’t have non-misleading comparable cross-country data for the actual size of government expenditures relative to total output is of relevance itself for my purposes on this blog.

Other than the issue of comparing apples and oranges, there are additional considerations we need to make when assessing statements like the ones I made above (“government expenditures were 61% of the entire French economy or 45% of the US economy in 2020”). One is about what we are supposed to infer from looking at government expenditures. If a measure is provided as a reference for the extent to which governments participate in the economy, using expenditures ignores the entire side of government regulation, which, in market economies, is likely at least as important as government expenditures to understand the influence of the government in the functioning of an economy. Looking beyond total expenditures and into their breakdown by levels of government, by consumption and investment, and other disaggregated data would likely also contribute to a much richer and productive discussion, not to mention the large literature on taxation, as well as financial indicators of debt and debt sustainability. These are all subjects that the IMF delves into professionally and releases publicly a lot of information about, even if not always easy to decipher. I can’t help wondering, however, whether sites like those of the IMF dashboards linked above are actually doing more harm than good by stressing one small and misleading indicator of government participation in the economy.

Another consideration in interpreting data such as that shown in the IMF dashboards is about GDP and what it represents. Although we often think of it as an indicator of the size of the economy: a) there are important limitations to this indicator, and b) when used, there are different indicators that may be more or less appropriate for different purposes. I will look at these issues in a future post.

References

BEA (Bureau of Economic Analysis). 2008. A Primer on BEA’s Government Accounts, by Bruce E. Baker and Pamela A. Kelly. Available: https://apps.bea.gov/scb/pdf/2008/03%20March/0308_primer.pdf?_gl=1*1anuf1l*_ga*NjM4MDQ4ODA2LjE3MTI3Nzc2ODE.*_ga_J4698JNNFT*MTcxMzExMzg4NC44LjAuMTcxMzExMzg4NC42MC4wLjA. Accessed: April 14, 20244.

BEA (Bureau of Economic Analysis). 2010. Frequently Asked Questions: BEA seems to have several different measures of government spending. What are they for and what do they measure? Available: https://www.bea.gov/help/faq/552 Accessed: April 12, 2024

International Monetary Fund (IMF). 2023. IMF DATAMAPPER. Fiscal Monitor, October. Available: https://www.imf.org/external/datamapper/G_X_G01_GDP_PT@FM/ADVEC/FM_EMG/FM_LIDC; Accessed: April 14, 2024.

United Nations (UN). 2024. UN National Accounts Statistics. Main Aggregates and Detailed Tables. Table 2.6, Available: https://unstats.un.org/unsd/nationalaccount/madt.asp?SB=1&#SBG; Accessed: April 14, 2024.

World Bank. 2024. World Development Indicators. Available:  https://databank.worldbank.org/source/world-development-indicators; Accessed: April 14, 2024 

Continue ReadingIndicators of Government Expenditures

Similarities in GDP Per Capita Trajectories

[For the data and R code for this blog post, please visit my GitHub repository EngelbergHuller/GDP-Growth-Similarities]

In my previous Engelberg Huller post, “Catch-up,” January 20, GDP per capita growth data over a 60 year period seems to suggest similarities in growth trajectories of countries geographically close to each other, whether reflecting similar institutions and histories, economic integration and interdependency patterns, or some other factor.

In an attempt to further explore these similarities, but also teach myself a bit of the open source statistical software R, I decided to look at growth data using an R package called “Similarity Measures.” This package offers functions built to compare two vectors and assess the numerical proximity between the elements of those vectors. Functions such as these are often used to compare the distance between two geographical trajectories, such as those of migrating animals or traffic. But they can also be used to compare trajectories of single variables over time.

I used the same dataset of Gross Domestic Product in constant local currency units over the 60 year 1961-2020 period that I used in the “Catch-up” post. I had to exclude 3 of the 93 countries used in “Catch-up” for lack of complete data for all the 60 years and I transformed GDP in constant LCUs into an index with 1961 = 100 to be able to compare trajectories in the same unit of measurement.

I used a function called Longest Common Subsequence (LCSS). This function counts the number of elements that are considered equivalent under certain criteria. The criteria are determined by three parameters. The following is my understanding of these parameters:

  • The first establishes what elements in each vector are compared. In the R function, this is the “pointSpacing” argument, A value of 2 means that 2 intervals between the indexed elements of each vector are allowed.
  • The second parameter establishes the difference allowed in the values between elements compared, for those elements to be considered equivalent. In the R function, this is the “pointDistance” argument.
  • The third parameter I have less of an understanding but is a margin of error established for the algorithm calculations, and it influences the “accuracy and speed of the calculation.” In the R function, this is the “errorMarg” argument. In calibration, this parameter seemed to make little difference in the outcomes.

I initially applied the LCSS function to the country GDP per capita index trajectories where 1961 was set to 100 for all countries. Because the LCSS function compares years based on the distance between their values, there are many more years considered the same by the function in the early period of the trajectories (say, 1960s) than in the later period (say, 2010s). This is not what we would like. We would like all period of the trajectories to be valued the same when accessing similarity between two trajectories.

So I turned to applying the LCSS function on the growth rates themselves. Doing so would mean that, when one countries GDP per capita index trajectory goes up, say 3 percentage points, and another one does too, the two trajectories would be considered equivalent in that year, even if at that point in time their cumulative growth histories had distanced their growth trajectories.

To calibrate the LCSS function (choose the parameters to use), I used the trajectories for Argentina and Uruguay, two countries whose GDP per capita growth trajectories appeared to be closely related in my  “Catch-up” post. I chose parameters that seemed intuitively reasonable and that didn’t seem to generate extreme outcomes (e.g. entire trajectories for two countries being considered the same or only the first year, 1961 = 100, being considered the same). I ended up with:

  • pointSpacing = 2
  • pointDistance = 2
  • errorMarg = 0.5

Running the LCSS function to compare 90 countries, 2 by 2, in all possible combinations, generates a matrix with 8100 results with diagonal = 59 (each country’s trajectory when compared to itself shows all 59 years being equivalent). This leaves 8100-90 = 8010 results that compare different countries. Because the function compares, say, Argentina to Uruguay and then Uruguay to Argentina, the number of unique results comparing two different countries is actually 8010/2 = 4005. Because it took my laptop a few seconds to compare each pair of trajectories, running the function for the entire set of 90 countries took me over 11 hours (and so I did each run overnight).

Out of the 90 countries, the two that had the closest GDP growth trajectories were France and Austria. With the parameters chosen, their growth rates were equivalent in 58 of the 59 years. The least similar trajectories had growth rates that were equivalent in 20 of the 59 years and there were three pairs of trajectories with that score: Burma and Bahamas, Greece and Chad, Iran and Indonesia.

The eight most similar pairs of trajectories were among five European countries: France, Belgium, Netherlands, Italy and Austria. Their growth trajectories are shown in Figure 1, below.

Figures 2 shows the most similar GDP per capita trajectories, those of France and Belgium, and Figure 3 shows their growth rates.

The South America Southern Cone had GDP per capita similarity scores in the 20s and 30s, i.e. their growth rates were similar in 20 to 40 of the 59 years compared (F4)

From the “Catch-up” post, we saw that the two highest growth countries in the 1960-2020 period were China and South Korea. Figures 5 and 6 below show how their growth trajectories compare. Their growth rates were comparable until the early 1990s, when South Korea’s growth rate slowed down and China continued its accelerated pace.

Two other interesting pairs of growth trajectories are the United States and the United Kingdom; and Bolivia and Guatemala. After the five aforementioned European countries, the next closest pair of growth trajectories are those of the United States and the United Kingdom (F7). All other countries with trajectories similar to others in 50 or more of the 59 years compared are rich countries (other European countries and Australia), the exception being the pair of trajectories for Guatemala and Bolivia (F8). Both these countries saw their GDP per capita fall in the first half of the 1980s. I will leave the reasons to explore in a potential future post.

The exercise above suggests strong connections between the growth trajectories of rich countries, not as much for the rest of the world. It also proved to be a nice little contribution to my own R learning. I intend to further explore growth data in future posts.

References

World Bank: World Development Indicators. Available from USAID IDEA: https://idea.usaid.gov/.  Accessed: January 14, 2023

Continue ReadingSimilarities in GDP Per Capita Trajectories

Catch-up

Look at the figure F1 below. It shows Gross National Income (GNI) per capita for countries in the Southern Cone of South America relative to that of the United States over a period of 26 years (1995-2020), as much data as I found available in Purchasing Power Parity (PPP). What do you see?

I see two main things:

  • Paraguay’s per capita income is pretty much the same share of the U.S.’s in 2020 as it was in 1995. Chile’s and Uruguay’s are slightly higher in 2020 than in 1995, Brazil’s is slightly lower than it was, and Argentina’s is quite lower than it was.
  • The biggest fluctuation in the ratio of GNI per capita’s relative to the U.S. was that of Argentina, particularly during the 10 year period between 1998 and 2008, when the ratio fell from around 0.4 to about 0.3 and then back up to 0.4 (interval shown by the vertical blue lines).

For someone interested in the economic development of the Southern Cone of South America, the two bullets are not very comforting. They suggest little to no “catch-up” happening relative to the United States. More generally, they show little movement at all in the ratio of national per capita incomes relative to the U.S., raising the question of how easy or hard it is to achieve some kind of catch-up. Even Argentina’s growth between 2002 and 2008 was likely mostly recovery from the decline between 1998 and 2002.

I looked at similar data for Central America, an area of particular importance to the U.S. and its foreign assistance, given the strong links of its population to the U.S. through migration flows.

Here too the main trend seems to be a relative stability in the ratio of national income of Central American countries relative to the U.S., the exception being some apparent progress being made by Panama since 2006.

Perhaps a secondary suggestion of both charts above, is that there seems to be stronger similarities in the trajectories of some countries in the same region relative to others. For example, Argentina and Uruguay. Or perhaps Brazil and Paraguay. Costa Rica, Panama’s neighbor, shows a slight upwards trend from 2006, potentially associated with Panama’s. In other words, it is worth exploring the strength of economic integration between neighboring countries (in a future post).

I decided to look at longer term growth trends. I used Gross Domestic Product (GDP) per capita data measured in constant local currency units (LCUs) for three reasons: the World Bank has data for over 90 countries starting in 1960 for this indicator, GDP is presumably a better indicator of productivity growth inside the country than GNI, and constant LCUs would circumvent the exchange rate issues that other units of measurement (like constant U.S. dollars or PPP international dollars) have to deal with. The drawback is that the absolute measures of output are not comparable between countries. It only makes sense to use LCUs to compare growth rates. I divided the average GDP per capita of a country between 2018-2020 by the average for that same country between 1961-1963. The result is how many times the GDP per capita of that country was multiplied over a 60 year period, in constant local currency. This is a measure of productivity growth.

Figure 3 below is a histogram for the 93 countries for which data were available. For 82 of those countries, the resulting growth factor in per capita GDP over the 60 year period was between 0 and 6. Three countries had a growth factor between 6 and 7 and the remaining 8 countries had higher growth factors, including factors of 58 for China, 28 for South Korea, 17 for Botswana and 15 for Singapore. I did not include a 94th country, Somalia, for which the factor was 551 and that seemed unreasonably large to me. I hope to explore in a future post.

Looking at these data, I again have two observations:

  • If the U.S. GDP per capita was almost 3 times higher in 2020 than in 1960, all the other countries who grew their GDP per capita by multiples between 0 and 4 or 5 did no or little catching up. If your GDP per capita is, say, a quarter of that of the U.S. and the U.S. grows its GDP per capita three times over a given period, you would need to grow yours by 3 x 4 = 12 times to catch-up. If your GDP per capita was a tenth of that of the U.S., you would need to grow your GDP per capita by a multiple of 30.
  • The countries that did some catching up seem geographically concentrated around China, with the exception of Botswana, as shown by the circle in the map below. The darker the red, the higher the GDP per capita growth factor. The darker the blue, the lower the GDP per capita growth factor.

F4. Map: countries in red shade are those in the first two buckets of the above histogram

Data Source: World Bank, World Development Indicators (WDI). GDP Constant LCUs and Population data. Map built using Tableau Public.

If China performed so well over the 60 year period, how come its GDP per capita today is not comparable or even larger than that of the U.S.? We do not have data in comparable units (e.g. PPP) going back that to 1960. But based on GNI data measured in current US$ (averaging exchange rates over a three year period – Atlas method). China’s GNI per capita in 1962 (oldest year) was approximately 2% (1/50) of that of the U.S. China would have had to have grown by a factor of 50 x 3 = 150 during that period to have caught-up with the U.S.

So here are some questions for potential exploration in future posts:

  1. How common/rare is it for a country to catch up? Are there particular circumstances that are always/often present when countries do catch up? Are these circumstances different for countries at different levels of GDP/GNI per capita?
  2. How good/bad are GDP and GNI as indicators of the standards of living and/or well-being of the population of a country?
  3. To what extent do fluctuations in exchange rates affect standards of living and well-being? How well are the different units of measurement of GDP and GNI able to remove the effect of any share of those fluctuations that do not reflect standards of living or well-being?
  4. What accounts for the apparent similarity in growth trajectories of some neighboring countries? Is it level of trade and/or economic integration? Is it similarity in their economies and exposure to similar external circumstances (shocks)?
  5. On the Southern Cone countries: Uruguay’s GNI per capita fluctuations seem to follow somewhat those of Argentina up to around 2013 or so, but then not so much. Same thing seems to have happened to Paraguay’s relative to Brazil. Was that actually the case and what could explain that?
  6. On Central America: what explains Panama’s performance after 2006?

References

World Bank: World Development Indicators. Available from USAID IDEA: https://idea.usaid.gov/.  Accessed: January 14, 2023

Continue ReadingCatch-up

End of content

No more pages to load